2015 DOE Vehicle Technologies Office Annual Merit Review

In-Situ Investigation of Microstructural Evolution During Solidification and Heat Treatment in a Die-Cast Magnesium Alloy

P.I.: Aashish Rohatgi,(509) 372-6047, aashish.rohatgi@pnnl.gov

Co-PI: Nigel Browning, (509) 375-7569, nigel.browning@pnnl.gov

Pacific Northwest National Laboratory

11th June 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID: LM092

Project Overview

Timeline

- Start Oct. 2013
- Finish Sept. 2015
- ▶ 60% Complete

Budget

- Total project funding:
 - PNNL: \$500k

Barriers

- Predictive Modeling Tools: Adequate predictive tools that will enable the low cost manufacturing of lightweight structures would reduce the risk of developing new materials for vehicular applications
 - Microstructural evolution during solidification at high cooling rates is not available to validate existing models

Targets

- The DOE-VT (2011-2015 multi-year plan) target for weight reduction of the vehicle and its subsystems is 50%
 - Understand solidification and heat-treatment kinetics far from equilibrium (AZ91D)

Partners

- Industry participants:
 - ESI

Relevance/Objectives

Relevance

- <u>Development of modeling tools</u>: In situ kinetic information will help develop modeling tools for accurate microstructure prediction of advanced Mg alloy die-castings
- <u>Petroleum displacement</u>: Improved predictive capability will reduce development costs & enable high-volume manufacturing of Mg die-castings
 - Mass-saving potential for Mg castings ~40-60%
 - Fuel economy increase by ~30-40%
 - Year 2010 US cars consumed ~3.9 Million barrels per day; 20% reduction in gallons/mile → Save ~0.8 Mbpd

Objectives

- 1. Understand the solidification kinetics of AZ91 melt at high cooling-rates
- 2. Understand the kinetics of phase evolution of $Mg_{17}AI_{12}$ and α -Mg during heat-treatment

Technical Barriers

- Experimental technique to study in-situ solidification kinetics at "high" cooling rates (100-1000 °C/s) does not exist
 - Conventional approach: Post-mortem (e.g. using chills, followed by microhardness, mechanical property measurements)
 - In-situ neutron diffraction and thermal analysis → 0.5 °C/s
 - DSC cooling rates → Max. 50 °C/min. (<1 °C/s)</p>
 - Dilatometers → ~200 °C/s (not applicable to melting-solidification)
 - Current solidification models are based on local equilibrium at liquid/solid interface which may not be the case under high cooling rates of HPDC

Knowledge Gap: Microstructural evolution during solidification at high cooling rates is not available to validate existing models

Project Milestones & Deliverables

Year	Milestone/ Deliverable	Description	Due	Status
	Milestone #1	Setup a sub-contract with ESI North America (ESI NA)	12/13	✓
	Milestone #2	Develop procedures to sputter coat AZ91 as a think film, up to 100 nm thick, for in-situ experiments	03/14	✓
Year I	Milestone #3	Determine optimal laser power and pulse-width to locally melt the AZ91 sample just above its melting point	06/14	✓
	Milestone #4	Acquire 10 diffraction patterns of Mg-Al and Mg ₁₇ Al ₁₂ at a cooling rate between 100-1000 °C/s during solidification of molten AZ91 in the DTEM -Provide NIST with 10 diffraction pattern data files of Mg-Al and Mg ₁₇ Al ₁₂ formed during solidification of molten AZ91	09/14	Postponed
Year II	Milestone #5	Simulate as-cast AZ91D microstructure at 3 cooling rates between 1-1000 °C/s	12/14	✓
	Milestone #6	Quantify liquid/solid front velocity in AZ91 at a diecasting cooling rate	03/15	Postponed
	Milestone #7	Model Mg/Mg ₁₇ Al ₁₂ interface stability & diffusivities of vacancies and defects in Mg ₁₇ Al ₁₂	06/15	On-track
	Milestone #8	Measure evolution kinetics of (Mg ₁₇ Al ₁₂) β-phase in die-cast AZ91 for isothermal aging between 150-300°C	09/15	On-track

NATIONAL LABORATORY

Technical Approach

Project Tasks

Task 1: Project Management

Task 2: Determination of in-situ solidification kinetics

- DTEM sample fabrication
- DTEM in-situ solidification characterization

Task 3: Determination of in-situ kinetics during heat-treatment

- Specimen fabrication for STEM
- In-situ heat-treatment & characterization

Task 4: Solidification Modeling

- Back-diffusion thermodynamics calculations
- Microstructure prediction calculations

Task 5: First-principles Atomistic Modeling

- Structural property calculation of α -Mg and Mg₁₇Al₁₂ phases
- Effect of defects and vacancies

Background: In-situ Solidification Kinetics Concept

Time, t

(Sputter Coated or

FIB Milled from Bulk)

Time, $t+\Delta t$ $\Delta t = ns \rightarrow 10s$

Time delayed (Δt) electron beam

- Nucleation/growth kinetics
- Phase volume fractions
- Velocity of solid/liquid interface

Technical Accomplishments: DTEM Sample Fabrication

Specimen Requirements

- Electron transparent
- Uniform composition
- Self-contained melt pool
- Min. size 10 μm x 10 μm

Element	Weight %	Atomic %	Uncert.		
Mg(K)	90.7	91.55	1.14		
AI(K)	9.29	8.44	0.38		

- Sputtered films with Mg-9 wt.% Al
- Nanocrystalline (~14 nm)

Technical Accomplishments: Thermal Modeling (in-situ melting)

- Predicted cooling rate >> 1000 K/s
- Pre-heat TEM specimen during In-situ melting

Technical Accomplishments: Ex-situ Laser Melting Results

Si chip

Large elongated grains after solidification

- Melting: 532 nm Nd:YAG pulsed laser,
 0.35 mJ, 1µs pulse-length
- Work on DTEM on-going
- Incorporated Zn in the sputtered film → AZ91 film

sputtered Mg-Al film

Technical Accomplishments: In-situ Heat-treatment in STEM

- ►Initial plan: Use FIB to mill selected regions from as-cast AZ91 for heat-treatment
- ► Challenges with FIB:
 - 1. Use of Pt for sample manipulation catalyzes oxidation of Mg
 - 2. Use of Ga ions in FIB → Mg-Ga intermetallics during heat-treatment

Current Approach

Use sputtered Mg-Al and Mg-Al-Zn (AZ91) films for heat-treatment

Technical Accomplishments:Microstructure Evolution (STEM)

Grain size evolution in Mg-9 wt.% Al films (TEM Bright Field)

$$D^n - D_o^n = Kt$$

 $K = K_o \exp(-Q/RT)$

D: Size of α or Mg₁₇Al₁₂

Do: Initial size

n: Growth exponent

K: Growth constant

t: Time

T: Temperature

Results

n: Growth exponent vs. temperature

Q: Activation energy for growth

Technical Accomplishments: Solidification Modeling

Solidification Path

Technical Accomplishments: ProCAST Predictions

Cellular Automata – Finite Element (CAFE) for grain prediction

SDAS Predictions

Caceres et al., Materials Science & Engineering A325(2002) 344-355

 Calibrated nucleation site density to match experimental grain-sizes and SDAS for different cooling rates

Technical Accomplishments: Atomistic Modeling

Tested two modified Embedded Atom Method (MEAM) potentials

Potential 1: Al/Si/Mg/Cu/Fe (Binary) MEAM Potential (available from NIST)

B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra and M. I. Baskes, Phys Rev B 85, 245102 (2012)

Potential 2: Al-Mg Potential

Y.-M. Kim N. J. Kim, B.-J. Lee, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 33 (2009) 650-657

- -Potential 1 gave properties (for Mg₁₇AI₁₂) that didn't match literature data
 - negative elastic constants c44, c55, c66
 - +ve heat of formation
 - -ve formation energy (substitutional atom)
- -We modified various parameters of <u>Potential 2</u> to get physical properties of Mg, Al, Mg-Al and $Mg_{17}Al_{12}$ close to DFT/experimental values

Technical Accomplishments: <u>Atomistic Modeling (Mg₁₇Al₁₂ Properties)</u>

Property	[2]	PNNL MEAM	[3]	DFT [3, 6]	Experimental [3]
Heat of Formation (meV/atom)	-44.2	-33.90	49.40	-17.0 – -48.0	-32.65 – -34.10
Cohesive energy (eV/atom)	-2.254	-2.33	-2.22	-2.032.47	Not Available
Lattice Constant (Å)	10.41	10.56	10.73	10.54 - 10.55	10.54 -10.56
Atomic Volume (Å ³)	19.45	20.31	21.28	18.65 –20.25	20.13 - 20.30
Bulk Modulus (GPa)	70.32	50.25	48.29	49.53 – 50.1	49.6

Good correlation with DFT and reported experimental values

- [2] POSTEC CMSE LAB. https://cmse.postech.ac.kr/lammps/3707. Accessed June 10, 2014.
- [3] Jelinek, B.; et al "Modified Embedded Atom Method Potential for Al, Si, Mg, Cu, and Fe Alloys." Phys Rev B (85), 2012; pp. 245102.
- [6] Kim, Y.-M.; et al. "Atomistic Modeling of Pure Mg and Mg–Al Systems." CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry (33), 2009; pp. 650–657.

Technical Accomplishments: Atomistic Modeling (Elastic Properties)

Material	Al		Mg		$Mg_{17}Al_{12}$		
(GPa)	MEAM	Experimental [7]	MEAM	Experimental [7]	MEAM	DFT [8]	
C_{11}	114.33	107.3	62.81	59.7	83.364	86.8	
C_{22}	114.33	107.3	62.81	59.7	83.364	86.8	
C_{33}	114.33	107.3	69.61	61.7	83.364	86.8	
C_{12}	61.91	60.9	25.97	26.2	32.142	29.0	
C_{13}	61.91	60.9	21.18	21.7	32.142	29.0	
C_{23}	61.91	60.9	21.18	21.7	32.142	29.0	
C_{44}	31.56	28.3	17.14	16.4	14.005	20.0	
C ₅₅	31.56	28.3	17.14	16.4	14.005	20.0	
C ₆₆	31.56	28.3	18.42	Not Listed	14.005	20.0	

- Existing precipitation models assume elastic constants of Mg₁₇Al₁₂ = Mg
- Good correlation with experimental values of Mg & Al, and DFT values of Mg₁₇Al₁₂

[7] Simmons, G.; Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook. MIT Press Cambridge, Mass., 1971.

[8] Wang, N. *et al.* "Structural and Mechanical Properties of Mg₁₇A₁₂ and Mg₂₄Y₅ from First-principles Calculations." *J. Phys. D. Appl. Phys.* (41), 2008; pp. 195408.

Pacific Northwest
NATIONAL LABORATORY

Response to Reviewers' Comments

▶ 1st year for review

Collaboration

- ► ESI North America (sub-contract)
 - Solidification modeling
 - Thermal modeling of in-situ melting and solidification

Remaining Challenges & Barriers

Challenge

- DTEM up and running
 - Optimize imaging conditions (signal-to-noise)
- ► Reduce the in-situ cooling rate (100-1000 °C/s)

Barrier

Inability to measure temperature inside the DTEM

Proposed Future Work: Upcoming Project Work

- Perform DTEM experiments
- Solidification modeling
 - Use in-situ DTEM data for modeling
- Heat-treatment
 - Determine grain growth kinetics and study effects of Zn (binary vs. ternary films)
- Atomistic modeling
 - Determine diffusion coefficients and effective migration barriers as a function of AI concentration and temperature

Summary

- The goal is to understand the kinetics & diffusion in Mg alloys under non-equilibrium conditions → AZ91 as a model system
- Ex-situ laser melting/solidification experiments and their thermal modeling has been completed → Work on in-situ melting/solidification in a dynamic TEM is in progress
- ► FIB-based technique for specimen extraction from bulk AZ91 alloy poses unique challenges for in-situ heat-treatment in TEM → Sputtered films are being used to study microstructural evolution during heat-treatment
- ▶ ProCAST calibration parameters for SDAS and grain-size in AZ91 have been determined. → Goal is to compare in-situ solidification results with ProCAST predictions
- Atomistic modeling has improved upon existing Mg-Al potential to predict Mg₁₇Al₁₂ properties → Kinetic Monte Carlo method is being used to simulate microstructural evolution of heat-treated sputtered films

Technical Back-Up Slides

Background: Dynamic Transmission Electron Microscope (DTEM)

- Laser-driven photocathode electron source
- Resolution: ~0.3 nm, ~100 ns
- ➤ 2 separate lasers → wide range of time delays between the pump and the probe lasers
- ► The drive laser can be modified (bio-specimens as well)
- 2k x 2k CCD camera

Challenges

- Temperature control
- Cooling rate control
- Optimize imaging conditions

Technical Accomplishments: Ex-situ Laser Melting Calibration

- Pulsed Nd:YAG laser (532 nm)
- Pulse length: 1 μs
- Single-shot mode
- Melt in ambient

<u>Laser-Melting</u> Parameters

0.35 mJ energy 1µs pulse-length

Technical Issues: In-situ Heat-treatment in STEM

Ga-Mg (Gallium - Magnesium)

H. Okamoto, 1991

Technical Accomplishments: Microstructure Evolution (STEM)

Phase evolution in Mg – 9Al thin film during heat treatment

Technical Accomplishments: Atomistic Modeling (Energy of Formation)

Material	Vacancy (eV)		Intersitial (eV)				Substitutional Atom (eV)			
			MEAM		DFT [3]		MEAM		DFT [3]	
	MEAM	DFT (Exp.) [3]	Octa.	Tetra.	Octa.	Tetra.	Mg	Al	Mg	Al
Al	0.68	0.55 (0.67)	2.65	3.11	2.8	3.3	0.04	-	0.05	-
Mg	0.89	0.7 (0.5-0.89)	2.54	2.57	2.2	2.2	-	0.013		0.06

PNNL adjusted MEAM gave values closer to published DFT/experimental values

[3] Jelinek, B.; et al "Modified Embedded Atom Method Potential for Al, Si, Mg, Cu, and Fe Alloys." Phys. Rev B (85), 2012; pp. 245102.